Tree-width and Logspace: Determinants and Counting Euler Tours

نویسندگان

  • Nikhil Balaji
  • Samir Datta
چکیده

Motivated by the recent result of [EJT10] showing that MSO properties are Logspace computable on graphs of bounded tree-width, we consider the complexity of computing the determinant of the adjacency matrix of a bounded tree-width graph and prove that it is L-complete. It is important to notice that the determinant is neither an MSO-property nor counts the number of solutions of an MSO-predicate. We extend this technique to count the number of spanning arborescences and directed Euler tours in bounded tree-width digraphs, and further to counting the number of spanning trees and the number of Euler tours in undirected graphs, all in L. Notice that undirected Euler tours are not known to be MSO-expressible and the corresponding counting problem is in fact #P-hard for general graphs. Counting undirected Euler tours in bounded tree-width graphs was not known to be polynomial time computable till very recently Chebolu et al [CCM13] gave a polynomial time algorithm for this problem (concurrently and independent of this work). Finally, we also show some linear algebraic extensions of the determinant algorithm to show how to compute the characteristic polynomial and trace of the powers of a bounded tree-width graph in L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded Treewidth and Space-Efficient Linear Algebra

Motivated by a recent result of Elberfeld, Jakoby and Tantau[EJT10] showing that MSO properties are Logspace computable on graphs of bounded tree-width, we consider the complexity of computing the determinant of the adjacency matrix of a bounded tree-width graph and as our main result prove that it is in Logspace. It is important to notice that the determinant is neither an MSO-property nor cou...

متن کامل

Counting Euler Tours in Undirected Bounded Treewidth Graphs

We show that counting Euler tours in undirected bounded tree-width graphs is tractable even in parallel by proving a GapL ⊆ NC ⊆ P upper bound. This is in stark contrast to #P-completeness of the same problem in general graphs. Our main technical contribution is to show how (an instance of) dynamic programming on bounded clique-width graphs can be performed efficiently in parallel. Thus we show...

متن کامل

Space and circuit complexity of monadic second-order definable problemes on tree-decomposable structures

A famous theorem of Courcelle states that every problem that is definable in monadic second-order (mso) logic can be solved in linear time on input structures of bounded tree width. While Courcelle’s result is optimal from the algorithmic point of view, this thesis shows how to solve monadic secondorder definable decision, counting, and optimization problems on tree-widthbounded structures opti...

متن کامل

Exact counting of Euler Tours for Graphs of Bounded Treewidth

In this paper we give a simple polynomial-time algorithm to exactly count the number of Euler Tours (ETs) of any Eulerian graph of bounded treewidth. The problems of counting ETs are known to be ♯P complete for general graphs (Brightwell and Winkler, 2005 [4]). To date, no polynomial-time algorithm for counting Euler tours of any class of graphs is known except for the very special case of seri...

متن کامل

Counting and Sampling Problems on Eulerian Graphs

In this thesis we consider two sets of combinatorial structures defined on an Eulerian graph: the Eulerian orientations and Euler tours. We are interested in the computational problems of counting (computing the number of elements in the set) and sampling (generating a random element of the set). Specifically, we are interested in the question of when there exists an efficient algorithm for cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1312.7468  شماره 

صفحات  -

تاریخ انتشار 2013